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ABSTRACT

The same broad-band properties that make
chaos interesting as a potential communications
carrier also cause trouble when chaotic signals
are transmitted through real communications
channels. Phase and amplitude distortion of a
chaotic signal can ruin the ability of a chaotic
receiver to synchronize to an incoming chaotic
signal.  We show that it is possible to use narrow
band filters with the chaotic signal to reduce its
bandwidth, decreasing the effects of channel
distortion, and still synchronize a chaotic
receiver to the incoming chaotic signal.

INTRODUCTION

There are many approaches to
communication with chaotic signals [1-6], but
the issue of how to successfully transmit a
chaotic signal with minimum distortion through a
communications channel has yet to be resolved.
Adaptive techniques for reversing channel
distortion have been proposed [7, 8], as well as
methods to create narrow band chaotic
transmitters [9]. Our work here takes a non-
adaptive approach: we pass a broad-band chaotic
signal through a narrow band filter, either before
or after transmission through the channel. We
pass an identical signal from the chaotic receiver
through an identical filter, and take the difference
between the filtered transmitter signal and the
filtered receiver signal. The difference signal is
fed back into the receiver. when the transmitter
and receiver are synchronized, the difference
signal is zero.

SYNCHRONIZATION TECHNIQUES

In general, we may express our drive and
response systems in the form
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where x is the drive system state vector, x' is the
response system state vector, k and b are
constant vectors (suggested by the work of Peng
et al [10]),  u is a scalar, G is a dynamical
system, and gi is a signal taken from the
dynamical system G. We make a linear
combination u of signals from the drive system
F(x) and drive the dynamical system G  with u .
We then take a signal from G, such as gi, and
transmit it to the response system. We set up the
response system in the same way, then multiply
the difference (gi' - gi ) by the vector b and add it
to the response vector field. We find that if the
response system (including G ) has all Lyapunov
exponents less than zero, the response will
synchronize to the drive. In this work, we use
bandpass filters for the dynamical system G,
although other dynamical systems may work. A
bandpass filter passes only a certain band of
frequencies from the input signal.

NUMERIC EXPERIMENTS

As a numerical example, we link two Lorenz
systems [11] through a bandpass filter. For our
Lorenz example, the vector field F  was given by
dx1/dt = 16(x2 - x1 ), dx2/dt = - x1x3 + 45.92x1 -
x2, and dx3/dt = x1x2 - 4x3 . The scalar u was u
= k1x1 + k2x2 + k3x3 . The filter G was
described by
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At the response system, we took the difference
(g2' - g2 ), multiplied by a vector b = (b1, b2, b3)
and added the result to the response vector field.

Equation (2) represents a second order
bandpass filter [12]. The center frequency fc is
passed with a gain of 1, while other frequencies
are attenuated by an amount that increases as
they become farther from fc. The constants were
C = 1, R1 = 3.183, and R2 = 6.366. R3 was used
to vary the center frequency of the filter, so for a
center frequency of fc, R3 = R1/(-1 + 4(πfc
)2R1R2). For these parameters, the Q factor of
the filter was 20 (the Q factor is the center
frequency fc divided by the bandwidth). The
center frequency fc of the filter was varied
between 0.1 and 10. Numerical integration was
carried out by a 4-th order Runge-Kutta
integration routine [13]. The components of k
and b [10] were chosen by a numerical
minimization routine to make the largest
Lyapunov exponent for the response system less
than zero.

Figure 1. (a) Power spectrum of transmitted
signal u before filtering. (b) Power spectrum of
transmitted signal  u after filtering.

Figure 1(a) shows the power spectrum of the
signal u  for the Lorenz system. Figure 1(b)
shows the power spectrum of the signal g2 the

filtered version of u, for a center frequency fc =
5.44. The components of k and b were k1 =
273.0212, k2 = 23.26557, k3 = 16.24705, b1 =
18.93643, b2 = 20.51921, and b3 = -3.04397. For
these parameters, the largest Lyapunov exponent
for the response system was -4.95. Figure 2
shows the synchronization of the response
system to the drive system. We found that with
the above parameters, the response system was
stable for fc ranging from about 1 to about 9.

Figure 2. Synchronization of Lorenz systems
when response is driven through a filter. Solid
line is the drive system and dotted line is the
response system.

CIRCUIT EXAMPLE

We also built a set of electronic circuits that
could be synchronized through a filter. Our drive
and response circuits were piecewise linear
circuits [14] whose attractors resembled the
Rossler attractor. We filtered out all but the
central peak in the transmitted signal spectrum
(Fig. 3(a)) by bandstop filtering the signal u from
the Rossler drive circuit and subtracting from the
unfiltered signal. We found that this arrangement
was more stable for our circuits than a bandpass
filter.

Our drive circuit vector field was described
by dx1/dt = -γ  ( 0.05x1 + 0.5x2 + x3), dx2/dt = -γ
(-x1 - 0.11 x2 ), and dx3/dt = -γ  ( x3 + h(x1) ),
where h(x) = 0 if x  3 and h(x)= 15( x - 3) if x >
3. The time factor γ  was 104 s-1.

The filter G was described by
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where the narrow band output signal was gf.
The filter Q was given by (α  + 1)/3, and the filter
gain was -β  /(1 + α ). The Q factor was set to 7
(α   = 20) and the gain to -1 (β  = 1+α. ). The
filter center frequency fc (the frequency at which
the bandstop output was zero) was 1/(2πRC). We
set the center frequency to coincide with the
main frequency peak in the spectrum of the
signal u from the circuit, at 1145 Hz. Figure 3(a)
shows the unfiltered power spectrum of u, while
Fig 3(b) is the power spectrum of the filtered
signal gf . We transmitted the signal gf to the
response circuit.

Figure 3. (a) Power spectrum before filtering of
the transmitted signal u  from the drive circuit.
(b) Power spectrum of the filtered drive signal.

The response circuit was piecewise linear, so
we were able to estimate the stability of the
response circuit by finding a Jacobian for the
case g(x ) = 0. This Jacobian was constant, so we
used the largest real part of the eigenvalues of
the Jacobian as an estimate of the stability of the
response circuit. We varied the components of k
and b to find a stable response system.

The response circuit was stable for k1 = -1.9,
k2 = 1.1, k3 = 1, b1 = 1, b2 = 1, and b3 = 1. The
largest real part of the eigenvalues for the
response circuit was -1,170 . Figure 4 shows v

from the response circuit vs. u from the drive
circuit, showing synchronization.

One might ask why a narrow band filter
passes enough information to synchronize a
response circuit. We may divide the chaotic
motion into motion on a synchronization
manifold (where the systems are synchronized)
and motion transverse to the synchronization
manifold. Hunt and Ott [15, 16] have stated that
one gets the optimal average of any smooth
function of a system state by averaging over a
low period orbit, so if the averages over several
low period orbits of the Lyapunov exponents
transverse to the synchronization manifold are
negative, we should see synchronization [17, 18].
For the piecewise linear Rossler circuit, all of the
low period unstable orbits have a large spectral
component at the main peak in the Rossler
spectrum, so if we filter at this peak frequency,
we can stabilize all of the low period orbits at
once.

Figure 4. Signal u' from the response circuit vs.
signal u from the drive circuit, showing
synchronization.

The periodic orbits for the Lorenz system
contain many different frequencies. Although the
global Lyapunov exponents for the Lorenz
response system above are always negative, the
local Lyapunov exponents are sometimes
negative and sometimes positive. We are able to
make the average Lyapunov exponent negative
because we are stabilizing one or more low
period orbits, which dominate the average. We
added 1% random noise to the Lorenz simulation
and saw no evidence bursting away from
synchronization [17, 18].

CONCLUSIONS

Using a narrow band signal to synchronize
broad band systems has some obvious
advantages for applications in communications.



Reduced bandwidth means that the transmitted
signal will suffer less distortion. Filtering the
transmitted signal at the receiver will remove
much of the noise picked up in transmission. One
could even synchronize multiple response
systems to the same chaotic signal filtered at
different frequencies. By comparing the different
response systems, one might be able to reduce
the effects of frequency dependent noise.

Adding filters to synchronized chaotic
systems does bring some loss of stability, so the
filtered systems will take longer to synchronize
and be less robust to noise that is not filtered out.
One may understand this loss of stability by
considering the filtering as a convolution of a
time series with some filter function. The
narrower the passband of the filter, the longer the
time over which the filter averages the incoming
signal. Long time averages mean that the filter
cannot respond quickly to changes in the
incoming signal, so the response system is less
stable. Rulkov [9] has described an alternate
method which avoids this stability problem by
designing narrow-band chaotic systems.
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